IonTorrent: High throughput sequencing in a diagnostic laboratory

B. Dworniczak¹, S. Fleige-Menzen¹, P. Pennekamp²

¹University Hospital Muenster, Institute of Human Genetics, Muenster, Germany,

²University Children's Hospital Muenster, Department of General Paediatrics, Muenster, Germany

Problem

Overall Perfomance

Problem Molecular diagnosis of complex human genetic disorders can still be challenging especially if multiple genes harbouring putative deleterious mutations have to be investigated. Currently in most cases Sanger sequencing is applied, however capiliary sequencing is time-consuming as well as expensive for the screening of multiple large genes. In 2005 first next- or second-generation sequencers have been introduced and since then, multiple improved NGS platforms are in several laboratories in use. However most of these platforms and in particular accompanying software are especially made for sequencing projects analysing complete genomes and it is not easy to scale down this technology for the very special needs of a diagnostic setting. In order to adjust technology to those specific needs recently three benchtop high-throughput sequencing instruments have been launched. While the GS Junior (454 Life Sciences) and the Misce (illumina) depend on established technology the IonTorrent PGM introduced a complete new sequencing technology based on the detection of hydrogen ions that are released during the polymerization of DNA. Here we report on our experiences during the last six month setting up a workflow which finally should result in the integration of the IonTorrent PGM into a diagnostic laboratory. Although results are still preliminary our data will be crucial for the decision whether this technology can be implemented for diagnostic purposes.

for diagnostic purposes.

Goal/First milestone

Adaptation of a medium high throughput sequencing technology to the needs of a diagnostic laboratory; gradually replacement of low throughput capillary electrophoresis. To compete with our established work flow as first milestone we aimed at the simultaneous analyses of at least ten patients for the breast cancer genes BRCA1, BRCA2 and RAD51c. The cDNA of these three genes cover roughly 16980 bp split into 85 PCR fragments; in addition 4300 bp of flanking region has to be analysed.

Prerequisites to reach these goals:

Technical set up of the complete sequencing work flow Evaluation of data compared to data obtained by capillary electrophoresis

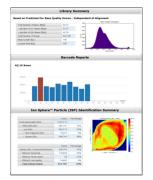
Work flow

The workflow of each second-generation sequencing experiment is divided into 4 independent parts and each part itself is further sub-divided into veral sections.

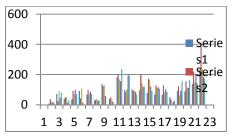
Enrichment of target sequences

Library construction

Sequencing


Interpretation of raw data

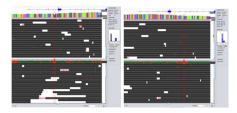
Results


During the last six month we performed nearly 40 runs using the lon 314 sequencing chip to develop a workflow and to evaluate the system. We exclusively sequenced PCR fragments already checked by capillary electrophoreses. So far we did not change the PCR set up already established for the genes of interest and we did not normalize the amount of PCR fragment used for the analyses. So far we checked more than 15 different genes and for most runs we barcoded the probes; we used between 4 and 12 different barcoded probes per analysis. For post-run data analysis we used analysis we used:

anarysts we used. Soft ware package provided by IonTorrent (Aligner and variant caller) Gensearch NGS (version 1.3.7, PhenoSystems SA) NextGENe (version 2.2; SoftGenetics)

Basic data are represented in the report generated after each run. This report shows that after some training at least 30x10⁶ bp of high quality sequence can be generated using the smallest lon 314 chip. Assuming an even distribution analysing the three breast cancer genes of the patients (21500 bp each) each nucleotide could have a sequencing depth of 140. The yield could be increased by improving read length (in this run average 146 bp).

Most software packages allow checking the coverage of each single nucleotide and the comparison below show that even without normalization independent series of PCR reaction yield a reproducible pattern of coverage. In the chard below five independent PCRs for BRCA1 are shown.



Data analysis

The data package provided by IonTorrent included an SFF file, a data format that contains read sequences and base qualities. There are also BAM files, which include the aligned read sequences, indexed for random access. And there are FASTQ files, which is the common sequence-andaccess. And there are FASIQ tiles, which is the common sequence-and-quality input format used by many short read aligners. Using barcodes all files in addition are provided in the specific forms. As plug-in IonTorrent recently introduced a "so-called" variantCaller compling a list of putative mutations/variants which diver from the reference provided by the user. For independent analyses we used Gensearch NGS (version 1.3.7; PhenoSystems SA) NextGENe (version 2.2; SoftGenetics). Both software packages were feed with barcode specific FASTQ-files generated by IonTorrent packages IonTorrent

IonTorrent and Indels

It is frequently discussed that the IonTorrent technology tends to show small Indels which confuse interpretation of data whereat deletion of single nucleotides are much more frequent compared to insertions. Originally these indels where mostly reported for longer tracks of the same nucleotide. During our evaluation we noticed that beside indels (ore mostly deletions) in During both evaluation we house in the basic where the first both evaluations, in tracks deletions frequently occur in a **reproducible sequence-specific** manor (example shown in the figure). However most indels occur strand-specific skewing the balance between the forward read and the reverse read (Value for "balance" will strongly differ from 1).

ion c.1410_1411delC is only present in the reverse reads which uncovers that this mut capillary electrophoresis. Shown are two independent series of BRCA1 amplifications.

Reproducibility of sequence specific artefacts and the imbalance of occurrence in the forward and reverse reads allow setting up a validation

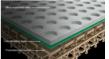
- scheme consisting of: 1. Run specific variant validation filter combining balance, frequency of variant in all reads and distance to the region of interest. Starting from a minimal sequencing depth (30-50) increasing the depth does not further improve the validation and its importance is frequently overestimated
- A profile of the known artificial variants as "background" for the gene 2 of interest, based on the analysis of e.g. 10 independent analyses

An example of efficient filtering reducing the number of variants from 2398 to the only real one can be seen on the following figure. (produced with Gensearch NGS (version 1.3.7; PhenoSystems SA)

Independent of the quality of the validation scheme detection of real deletions (especially deletions larger than 6-10 bp) on the background of artificial deletions pose a severe problem which still awaits a manageable solution.


Resümee

 $2^{\rm nd}$ generation sequencing in a diagnostic setting using benchtop sequencer - in our case IonTorrent PGM - will be feasible in the near future although soft ware development and adaptation to diagnostic needs lags behind. This may be due to the fact that so far software packages are mainly developed whole genome/exome sequencing.


The main principle of the machine

In nature, when a nucleofide is incorporated into a str of DNA, a hydrogen ion is released as a by-product.

a hydrogen ion a the pH of the

ells. Each enorm this process in using a high-density a e bead with a DNA te

The l one that i record If the volta det the chip does not match, no voltage un-des the chip does not match, no voltage un-and no base will be called. are two identical bases on the DNA strand, the will be duplicated, and the chip will record two invests called.

on beads and amplified by emulsion PCR. The beads are then deposited in the te bead canying a unique amplified fragment. Nucleolides are then added in a cleolide complementary to the nucleolide in the fragment being sequenced gets and a hytrogen in scienced. Upon release of hydrogen inc, the voltage of by the loss sensor. Two nucleolides are incorporated in a cycle, then the voltage rolles added. If a nucleolide is not added during a cycle them to voltage modes. wells. A nur synthesi

lon par hol

Enrichment of target sequences

For diagnostic purpose a 100% coverage of the region of interest is essential. An established way to reach this is PCR. In our pilot studies we used PCR products usually used for capillary sequencing. Without further normalization identical aliquots (e.g. 3µl each) of all 85 PCRs from a single patient were combined and purified using QIAquick PCR purification kit (Qiagen).

- This step comprises several steps
 Fragmentation, blunting and phosphorylation of 250ng of the combined PCR products using the Ion Shear™ Plus Reagents Kit resulting in 200bp DNA-fragments

 >
 Ligation with the unique barcode adapter

 >
 Introducing of 10 different patient specific barcode sequences by PCP
- POR^{TC} Pooling of the 10 different probes and size selection (3% agarose gel); isolation of the 200bp band (300bp) and DNA recovery (QIAquick Gel Extraction Kit, Qiagen). >

After each step probes were purified (Agencourt, AMPure) and yield was quantified by use of the Qubit 2.0 Fluorometer.

- An important step before ePCR is the correct adjustment of the ratio between the quantity of the library (measured in number of molecules) and the amount of lon sphere particles. Calculation is done by us of the IonTorrent PGM emPCR calculator.
- spheres (ISPs) is completely automated (Ion OneTouch and OneTouch ES module)
- enced directly or stored for several days The

Performing the sequencing run

- The PGM-Sequencer has to be cleaned and initialized (chemicals
- The isolated and paquilibrated intractice (creative and paquilibrated) The ISPs are annealed to the sequencing primer and sequencing polymerase is added; after mixing and incubation for 5 min the probe has to be sonicated and can be transferred to the prepared
- probe the to be service of the problem of the PGM Sequencer the run can be started following the touch screen prompts

Time schedule

Þ

Obviously the actual time schedule is dependent of the protocol used and the experience of the user. Protocols and software packages provided by The experience of the user. Protocols and software packages provided by IonTorrent are still changing frequently. However using the most recent set up (using the lon AmpliSeq Custom panel for enrichment, lon AmpliSeq Library Kit V2.0, Barcoding-reaction, ePCR using OneTouch and OneTouch ES module, Ion 314 sequencing chip) a complete cycle starting with the enrichment upto data acquisition can be performed by a single person within two working daws within two working days

Library construction (10 different probes)